
Visma.net Integrations-
OAuth 2.0 Authorization
Flow
What is OAuth 2.0 Grant Type? 2

The Authorization Code Flow 2

1) Getting the User’s Permission 3

2) Redirect back to the Application 4

3) Exchange the Authorization Code for an Access Token 5

3.1) Access Token Generation methods 5

1. HTTP Basic authentication 5

2. Request body 6

What is OAuth 2.0 Grant Type?
In OAuth 2.0, the term “grant type” refers to the way an application gets an access token. OAuth 2.0 defines

several grant types, in Visma.Net Integrations the grant type used as of today is “Authorization Code”.

Each grant type is optimized for a particular use case, whether that’s a web app, a native app, a device

without the ability to launch a web browser, or server-to-server applications.

The Authorization Code Flow
The “Authorization Code” grant type is generally used by web and mobile apps. It’s different from other

grant types in that it requires the application to open a browser to initiate the flow. Therefore, the client

application has to be able to interact with the users browser and receive incoming requests from the

authorization server.

The flow is split up in two parts:

1. The application starts an authorization code request.

a. The application opens a browser to send the user to the OAuth server.

b. The user sees the authorization prompt and approves the app’s request.

c. The user is redirected back to the application with an authorization code in the query

string.

Authorization Flow Page 2 of 7

2. The application starts an access token request.

a. The application requests an access token with the authorization code provided in the

previous step.

b. The OAuth server exchanges this authorization code for an access token

1) Getting the User’s Permission
The point of using OAuth is to enable users to get access to the parts of the Application that they need. To

be able to do this, the application first has to decide what permissions it is going to ask for, then send the

User to a browser to get their permission to do this. To start the flow, the application constructs a URL like

the following and opens a browser to that URL.

● The first step in the process will be to get the user to login to Visma.net and give consent to access

the required data and functions (scopes) on behalf of the user. Since this step requires the user to

provide a username and password, it is very important that the user is redirected to the Visma.net

login-page and provides the credentials here.

● Username and password should not under any circumstances be provided to any other party than

this Login-page. The integration / application should never be aware of the username/password.

● The first step is therefore to generate a URL to the Visma.net login-page and redirect the user to

this URL. The URL must contain the following parts/parameters:

GET request: https://integration.visma.net/API/resources/oauth/authorize

?response_type=code
&client_id={yourApiClientID}
&redirect_uri={yourRegisteredRedirectURI}
&scope=financialstasks
&state={randomStringGeneratedByApplication}

Parameter Definition

URL Visma.net login-page.
https://integration.visma.net/API/resources/oauth/authorize

response_type This tells the authorization server that the application is initiating the authorization
code flow. - This parameter is mandatory and should be set as “Code”.

client_id The ClientId of the application that is requesting the authorization. This parameter is
mandatory. “Client_Id & client_secret” can be obtained during the onboarding process.

Example:
client_id=visma_test_client_1234

Redirect_uri Tells the authorization server where to send the user back to after they approve the
request. - This parameter is mandatory and must match one of the Redirect_URIs
that you’ve registered for Visma.Net Integrations API Client. Otherwise, the request
will return an error.

Authorization Flow Page 3 of 7

https://integration.visma.net/API/resources/oauth/authorize
https://integration.visma.net/API/resources/oauth/authorize

Scope The different scopes you want the user to authorize access to. In Visma.net Financials,
only one scope exists, “financialstasks”.

This field is mandatory and case-sensitive, this should be set as “financialstasks”

state State is an optional parameter you could provide to differentiate different sessions
or calls to the login-page.

The value of the parameter is sent back to your application in the redirect_uri call. For
instance, If you are hosting a web-application, you can have multiple requests going
at the same time for multiple users. The state will then be used to differentiate the
calls when the redirect-call is done.

Additionally, The application generates a random string and includes it in the request.
It should then check that the same value is returned after the user authorizes the
app. This is used to prevent CSRF attacks.

● When the user is redirected to the authorization server, they will be prompted to enter their

credentials to allow the applications request.

● When signed in, the user will be presented with the consent-screen, where the user will be
prompted to allow the client to access the users' data (Scope).

Authorization Flow Page 4 of 7

2) Redirect back to the Application
If the user approves the request, the authorization server will redirect the browser back to the redirect_uri
specified in the request, adding a code and state to the query string.

For example, the user will be redirected back to a URL such as:

https://yourApplicationLivesHere.com/redirect

?code={authorizationCodeGeneratedByAuthServer}
&state={randomStringGeneratedByApplication}

Parameter Definition

code The authorization code generated by the authorization server that will be used to
exchange for a Token. “Code” expires in 10 minutes

state The state value will be the same value that the application initially set in the request.
The application is expected to check that the state in the redirect matches the state it
originally set.

3) Exchange the Authorization Code for an Access Token
The last part of the Authorization Code flow is to exchange the Authorization Code the user just received for

an access token.

The application makes a POST request to the token endpoint.

(https://integration.visma.net/API/security/api/v2/token)

There are two ways of doing this, HTTP Basic authentication or sending the client_ID and client_Secret in the

Request Body. Both ways require a couple of parameters. (All the following keys are mandatory.)

Field Definition

grant_type This tells to the token endpoint that the application is using the “Authorization Code”
grant type. - This should be set as “authorization_code”

Code The code obtained from the callback to the Redirect URI

redirect_uri The same redirect URI used during the “authorization” process.

client_id The Client ID of the Client-application.

“Client_Id & client_secret” can be obtained during the onboarding process.

Example:
client_id=visma_test_client_1234

client_secret The Client Secret of the Client-application. This ensures that the request to get the
access token is made only from the application, and not from a potential attacker that
may have intercepted the authorization code.

Example:
client_secret=98ana4-7a8d-4e14-2247-957812ac9ec

Authorization Flow Page 5 of 7

https://yourapplicationliveshere.com/redirect
https://integration.visma.net/API/security/api/v2/token

3.1) Access Token Generation methods

1. HTTP Basic authentication
The HTTP Basic authentication scheme is the preferred way, and we encourage all clients that can utilize this

authentication scheme to use it. It is done by providing an Authorization header on the request:

● Authorization: Basic {Base64(client_id:client_secret)} - The value of the Authorization header is a

string composed of the authorization method a whitespace (“Basic “) followed by a Base64 encoded

string obtained from combining client_ID and client_Secret separated by a

colon(client_id:client_secret).

An example request can be seen below:

POST: https://integration.visma.net/API/security/api/v2/token

Request Header:

Content-Type: application/x-www-form-urlencoded
Authorization: Basic Y2xpZW50X2lkOmNsaWVudF9zZWNyZXQ=

Request Body:

grant_type=authorization_code&
code={authorizationCodeGeneratedByAuthServer}&
redirect_uri={yourRegisteredRedirectURI}&

2. Request body

The second option for the client is to send its client_id and client_secret to Visma.net Integrations in the

request body. This option should be used by clients that cannot utilize HTTP Basic authentication directly.

An example of this can be seen below:

POST https://integration.visma.net/API/security/api/v2/token

Request Header:
Content-Type: application/x-www-form-urlencoded

Request Body:
grant_type=authorization_code&
code={authorizationCodeGeneratedByAuthServer}&
redirect_uri={yourRegisteredRedirectURI}&
client_id={yourApiClientID}&
client_secret={yourApiClientSecret}

Please be advised:
All the request parameters sent to https://integration.visma.net/API/security/api/v2/token must be sent on request

body. Even though the entire transmission is encrypted when using HTTPS, it is not recommended sending
sensitive information (password and client_secret) in the URL as query parameters. The URLs are stored in web

server logs, which means that your sensitive data is saved in clear text on the server.

Authorization Flow Page 6 of 7

https://integration.visma.net/API/security/api/v2/token
https://integration.visma.net/API/security/api/v2/token

The token endpoint will verify all the parameters in the request, ensuring the code hasn’t expired and that

the client ID and secret match. If everything checks out, it will generate an access token and return it in the

response.

A successful response will look like this:

Response headers:

HTTP/1.1 200 OK
Content-Type: application/json

Response body:

{
"token": "1f729814-1a98-4c8e-860b-76ec004742f5",
"token_type": "bearer",
"scope": "financialstasks"
}

Now the client can start using the token and token_type to make requests to the Visma.net Financials

resources.

Please note: Currently, the “token” does not expire, and it can be used for making subsequent calls towards the

exposed endpoints. A new token should not be generated before making a new call; the token is not connected to

the session. Each consecutively generated token automatically invalidates the recently created one.

(Request made from the Same CLIENT ID & the Same Visma.Net Financials user for all integrations/company)

Example API request: Request Headers

Key Value

ipp-application-type Static Value.
Should always be set as "Visma.net Financials"

ipp-company-id Financials ERP Company ID
(Can be checked by making a GET Call to "Context"
Endpoint)

Content-Type original media type of the resource

Authorization HTTP authentication scheme that involves security
tokens called bearer tokens

Authorization Flow Page 7 of 7

